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Running of quark mass entails that calculations at even

modest Q2 require a Poincaré-covariant approach. Covariance
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Dynamical Chiral Symmetry Breaking (DCSB) is most

important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.

Challenge: understand relationship between parton properties

on the light-front and rest frame structure of hadrons. Problem

because, e.g., DCSB - an established keystone of low-energy

QCD and the origin of constituent-quark masses - has not

been realised in the light-front formulation.
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Must exhibit m2

π ∝ mq

Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.

Highly Nontrivial
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Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included

Interaction between quarks – the Interquark “Potential” –

unknown throughout > 98% of a hadron’s volume
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What is the

98% of the volume

The question must be
rigorously defined, and the
answer mapped out using
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QCD’s Challenges
Understand Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one

cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing
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– Coloured objects not detected, not detectable?

⇒ Understanding InfraRed (long-range)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . behaviour of αs(Q
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Qualitative and Quantitative Importance of:
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Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Cross-Sections built from Schwinger Functions
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Σ

=
D
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Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

B(p2) = m

(

1 − α

π
ln

[

p2

m2

]

+ . . .

)

m→0→ 0

No DCSB
Here!
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Reliable DSE studies of Dressed-gluon propagator:

R. Alkofer and L. von Smekal, The infrared behavior of QCD
Green’s functions . . . , Phys. Rept. 353, 281 (2001).
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QCD & Interaction Between
Light-Quarks

Kernel of Gap Equation: Dµν(p − q) Γν(q)

Dressed-gluon propagator and dressed-quark-gluon vertex

Reliable DSE studies of Dressed-gluon propagator:

R. Alkofer and L. von Smekal, The infrared behavior of QCD
Green’s functions . . . , Phys. Rept. 353, 281 (2001).

Dressed-gluon propagator – lattice-QCD simulations confirm that
behaviour:

D. B. Leinweber, J. I. Skullerud, A. G. Williams and C.
Parrinello [UKQCD Collaboration], Asymptotic scaling and
infrared behavior of the gluon propagator, Phys. Rev. D 60,
094507 (1999) [Erratum-ibid. D 61, 079901 (2000)].

Exploratory DSE and lattice-QCD studies
of dressed-quark-gluon vertex
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Mass from nothing .

In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Hadrons

• Without bound states, Comparison with
experiment is impossible

• They appear as pole contributions to n ≥ 3-point
colour-singlet Schwinger functions
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Hadrons

• Without bound states, Comparison with
experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

• What is the kernel, K?

or What is the long-range potential in QCD?
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Confinement

Infinitely Heavy Quarks . . . Picture in Quantum Mechanics

integration of the force-3 loops

bosonic string

V (r) = σ r − π

12

1

r

σ ∼ 470 MeV

Necco & Sommer

he-la/0108008
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Confinement

Illustrate this in terms of the action density . . . analogous to

plotting the Force = FQ̄Q(r) = σ +
π

12

1

r2

Bali, et al.

he-la/0512018
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Confinement

What happens in the real world; namely, in the presence of

light-quarks? No one knows . . . but Q̄Q + 2 × q̄q

Bali, et al.

he-la/0512018

“The breaking of the string appears to be an instantaneous

process, with de-localized light quark pair creation.”

Therefore . . . No

information on potential

between light-quarks.
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What is the light-quark
Long-Range Potential?

Potential between static (infinitely heavy) quarks
measured in simulations of lattice-QCD is not related
in any simple way to the light-quark interaction.Craig Roberts: Covariance, Dynamics and Symmetries, and Hadron Physics
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k
−
)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

QFT Statement of Chiral Symmetry
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2
λl

f iγ5 S−1(k
−
)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k
−
)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Nontrivial constraint
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Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k
−
)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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Persistent Challenge

Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
Not useful for the nonperturbative problems
in which we’re interested
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme
H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

Illustrate Exact Results

Make Predictions with Readily Quantifiable Errors
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

• Mass2 of pseudoscalar hadron
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

MH := trflavour

[

M (µ)

{

TH ,
(

TH
)t

}]

= mq1+mq2

• Sum of constituents’ current-quark masses

• e.g., TK+

= 1
2

(

λ4 + iλ5
)
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

fH pµ = Z2

∫ Λ

q

1
2tr

{

(

TH
)t

γ5γµ S(q+)ΓH(q;P )S(q
−
)

}

• Pseudovector projection of BS wave function at x = 0

• Pseudoscalar meson’s leptonic decay constant

i

i

i

i
Aµπ kµ

πf

k

Γ

S

(τ/2)γµ γ

S

5
55

=
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

iρH
ζ = Z4

∫ Λ

q

1
2tr

{

(

TH
)t

γ5 S(q+)ΓH(q;P )S(q
−
)

}

• Pseudoscalar projection of BS wave function at x = 0

i

i

i

i
P π   

πρ

k

Γ

S

(τ/2)  γ

S

5
55
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

Light-quarks; i.e., mq ∼ 0

fH → f0
H & ρH

ζ →
−〈q̄q〉0ζ

f0
H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary
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Radial Excitations
& Chiral Symmetry(Maris, Roberts, Tandy

nu-th/9707003 )

fH m2
H = − ρH

ζ MH

Light-quarks; i.e., mq ∼ 0

fH → f0
H & ρH

ζ →
−〈q̄q〉0ζ

f0
H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary

Heavy-quark + light-quark

⇒ fH ∝ 1
√

mH

and ρH
ζ ∝ √

mH

Hence, mH ∝ mq

. . . QCD Proof of Potential Model result
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fH m2
H = − ρH
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Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0
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Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit
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Radial Excitations
& Chiral Symmetry

Höll, Krassnigg, Roberts
nu-th/0406030

fH m2
H = − ρH

ζ MH

Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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Radial Excitations
& Lattice-QCDMcNeile and Michael

he-la/0607032

When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194
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Radial Excitations
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Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons.Craig Roberts: Covariance, Dynamics and Symmetries, and Hadron Physics
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Σ
=

D

γ
ΓS
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Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor
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Γµ(k;P )

S(p)

Evaluate this final,
three-dimensional integral
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Answer for the pion

Two → Infinitely many . . .
Handle that
properly in
quantum
field theory
. . .
momentum
-dependent
dressing
. . .
perceived
distribution of
mass depends
on the resolving scale
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Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . most wide-ranging studies employ

expertise familiar from meson applications circa ∼1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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expertise familiar from meson applications circa ∼1995.
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Unifying Study
of Mesons and Baryons

How does one incorporate dressed-quark mass function,

M(p2), in study of baryons? Behaviour of M(p2) is es-

sentially a quantum field theoretical effect.

In quantum field theory a nucleon appears as a pole in a six-

point quark Green function.

Residue is proportional to nucleon’s Faddeev amplitude

Poincaré covariant Faddeev equation sums all possible

exchanges and interactions that can take place between

three dressed-quarks

Tractable equation is founded on observation that an

interaction which describes colour-singlet mesons also

generates quark-quark (diquark) correlations in the

colour-3̄ (antitriplet) channel
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Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Ab-initio study
of mesons & nucleons

Eichmann et al.
– arXiv:0802.1948 [nucl-th]
– arXiv:0810.1222 [nucl-th]

Leading-order truncation of DSEs – rainbow-ladder

Corrections vanish with increasing current-quark mass

⇒ rainbow-ladder exact in heavy-quark limit

However, at physical light-quark mass, corrections to

observables not protected by symmetries: uniformly ≈ 35%

Roughly 50/50-split between nonresonant and resonant

(pseudoscalar meson loop) contributions

Symmetry preserving and systematic approach can

elucidate and account for these effects

Use this knowledge to constrain interaction in infrared

Interaction in ultraviolet predicted by perturbative

expansion of DSEs
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